
ZIMBABWE CENTRE FOR

HIGH PERFORMANCE COMPUTING

(ZCHPC)

Accessing, Configuring, and Running Parallel Jobs on HPC

Introduction

• High-Performance Computing (HPC) clusters enable researchers to tackle

complex, computationally demanding problems by combining the processing

power of multiple nodes.

• This distributed computing approach allows tasks to be executed in parallel,

significantly speeding up solutions to challenges that would overwhelm a

single machine.

• By breaking down complex problems into smaller tasks and running them

concurrently across multiple nodes, HPC clusters reduce computational

bottlenecks, shorten solution times, and reveal insights beyond the reach of

traditional computing methods.

Prerequisites

• A ZCHPC account is required to access the cloud platform.

• Proficiency with the Xen Orchestra interface is needed.

• Parallel processing programs, including scientific simulations, data

analytics, and machine learning algorithms.

• Basic command-line knowledge enhances operational clarity and

efficiency.

Logging In

• Logging into Xen Orchestra

1.Go to https://cloud.zchpc.ac.zw.

2.Enter your login credentials to

access the platform.

https://cloud.zchpc.ac.zw/

Accessing the Job Submission Virtual Machine

1.To submit HPC jobs, access the

designated VM, UBUNTU-HPC-

MGMT, displayed on the left.

2.Contact the HPC administrator for

login credentials or further

assistance.

Setting Up Your User Directory

1. Create your user directory using

the command:

 mkdir /path/to/directory

• Replace zchpc_admin with your

username as shown in the example on

the left.

2. Copy your data into the newly

created directory using:

• cp /source/path /destination/path

Workflow for Submitting Jobs

❖Create an application script

• Write or configure the application script for your task.

• For example, if using Python, the script might be app.py.

❖Prepare your data

• Organise and verify your input data before submission.

• Ensure data is in the appropriate directory.

❖Create a job submission script

• Write a job script that specifies resource requirements such as time, CPU, memory, and

the executable.

• This is typically done with a script - job.sh.

❖Submit the job

• Submit the job to the queue using sbatch.

• Example: sbatch job.sh

❖Monitor the job

• Check the status of the job in the queue with the following command:

• squeue -u your_username

❖Retrieve the output

• Once the job is complete, retrieve your output from the designated directory.

• Results are usually stored in the output file defined in the job script (result.txt).

• To display the contents of the result.txt file, use the following command in the terminal:

• cat result.txt

• In this section, we will explore snippets of a Python program

designed to implement parallel processing.

• The complete code for this example can be found in the

following directory:

• /nfs/shared/examples/example02/

• This example aims to provide users with a foundational

understanding of writing parallel programs that can be executed

on the cluster.

Example: Running a Python program

Setting Up MPI (Message Passing Interface)

• Purpose: Initialises the MPI environment and

retrieves each process’s unique identifier (rank).

• HPC Relevance: MPI facilitates communication

between processes running on different nodes in a

distributed system, enabling parallel execution of

tasks.

• Purpose: Distributes the outer cross-validation

folds among different MPI ranks (processes).

• HPC Relevance: This modulo operation ensures

that each MPI process handles a subset of the

folds, enabling parallel execution of cross-

validation across multiple nodes or processors.

Work Distribution Among MPI Ranks

Multithreading with ThreadPoolExecutor

• Purpose: Utilises multiple threads within each

MPI process to perform grid search concurrently.

• HPC Relevance: Combines distributed

computing (MPI) with shared-memory parallelism

(threads) to fully exploit the computational

resources of multi-core CPUs within each node.

• Purpose: Collects results from all MPI processes

to a single root process for aggregation

• HPC Relevance: Ensures that all parallel

computations are synchronised and that the final

results are consolidated correctly, a critical aspect

of distributed computing.

Synchronisation and Gathering Results

Job Submission Script
Breakdown

1. Job Configuration

• The first section configures the SLURM job

submission.

• #SBATCH --nodes=5: Allocates 5 nodes for the job.

• #SBATCH --ntasks-per-node=1: Runs 1 task per node.

• #SBATCH --cpus-per-task=50: Each task is assigned 50 CPU cores.

• #SBATCH --output=output.log: Specifies the output file, where job

logs will be saved.

2. Loading Python Environment

• The job begins by purging any previously loaded modules using module

purge.

• It then loads the Python environment (in this case, python/fastpyenv),.

3. Node-Specific Directory Creation

• The script dynamically creates a directory specific to each node where it

runs.

• The variable NODE_FOLDER is constructed using SLURM_NODEID to

ensure each node has its folder.

4. Running the Python Program with MPI

• The Python script svm_hybrid_folder.py is executed across the nodes using

MPI (mpirun), ensuring parallel execution.

• The --node-folder argument passes the path to the node-specific folder

created earlier, and --n-cpus 50 specifies the number of CPUs assigned for

each task.

	Slide 1
	Slide 2: Introduction
	Slide 3: Prerequisites
	Slide 4: Logging In
	Slide 5: Accessing the Job Submission Virtual Machine
	Slide 6: Setting Up Your User Directory
	Slide 7: Workflow for Submitting Jobs
	Slide 8
	Slide 9: Example: Running a Python program
	Slide 10: Setting Up MPI (Message Passing Interface)
	Slide 11: Multithreading with ThreadPoolExecutor
	Slide 12: Job Submission Script Breakdown

